
Towards Better Evaluation for Dynamic Link Prediction

Learning on Dynamic Graphs

Dynamic graphs are used for modeling many real-world networks.
• One important task: dynamic link prediction

Given a timestamped stream of edges:
𝐺 = 𝑠!, 𝑑!, 𝑡! , 𝑠", 𝑑", 𝑡" , … ; 0 ≤ 𝑡! ≤ 𝑡" ≤ … ≤ 𝑇

Objective:
Predicting the existence of an edge between a pair of nodes in the future.

• Remarkable observation:
SOTA methods have near-perfect performance for dynamic link prediction!
à Current evaluation settings are not challenging enough.

Historical and Inductive Negative Sampling

Understanding Dynamic Graph Datasets

• Limited domain diversity.
Six new dynamic network datasets:

Novel visualization techniques for the investigation of dynamic networks:
TEA & TET plots

• Easy negative edges.
Novel negative sampling strategies: Historical NS and Inductive NS

• Lack of a simple baseline.
EdgeBank: a baseline for dynamic link prediction
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EdgeBank: A Baseline for Dynamic Link Prediction

A pure memorization-based approach: A bank of observed edges
Detects edges with frequent recurrence patterns but fails for a previously 
seen negative edge or an unseen positive edge
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘! memorizes all observed edges
𝐸𝑑𝑔𝑒𝐵𝑎𝑛𝑘"# only memorizes edges from a time window from the recent past

Domain Transport Politics Economics Proximity
New Dataset Flights Can. Parl. US Legis. UN Trade UN Vote Contact

Impact of Negative Sampling

Summary of Contributions

• The ranking of methods changes in the historical and inductive NS.
• EdgeBank shows competitive performance, particularly in the standard

setting, and even outperforms in some datasets, e.g. LastFM.
• With the alternative negative sampling (i.e. historical and inductive NS):

A clear gap between the performance of the SOTA models and EdgeBank.
The models’ ranking changes.

Standard Negative Sampling Historical Negative Sampling Inductive Negative Sampling

New Datasets

Contact -novelty=0.42 Can. Parl. - novelty=0.69

TEA (Temporal Edge Appearance) Plots
• High variance in temporal evolutionary patterns.
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|𝐸!| , 𝑤ℎ𝑒𝑟𝑒 𝐸! = 𝑠, 𝑑, 𝑡& 𝑡& = 𝑡 𝑎𝑛𝑑 𝐸%&&'! = {(𝑠, 𝑑, 𝑡&)|𝑡& < 𝑡}

TET (Temporal Edge Traffic) Plots
• Recurrence pattern of edges over time.
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Contact  - recurrence=0.44 & surprise=0.12 Can. Parl. - recurrence=0.01 & surprise=0.57

We help solve the dynamic link prediction challenges:


